\n
  • Process Improvement Fundamentals \u2013 principles of work simplification and motion analysis; recording of work flow and methods; process improvement through work measurement and standards, time study, synthetic data (data generated by applying a sampling technique to real-world data or by creating simulations / models), predetermined time systems and work sampling; allowances and performance rating, productivity measures; introduction to lean manufacturing principles
  • \n
  • Intermediate Design and Manufacturing \u2013 advanced computer-aided part design with geometric dimensioning and tolerancing, assemblies, and prototyping techniques for metal, polymer, and composite components; communication of design information to manufacturing; hands-on experience with non-traditional manufacturing processes
  • \n
  • Engineering Economics \u2013 economic analysis of engineering decisions; determining rates of return on investments; effects of inflation, depreciation, and income taxes; sensitivity, uncertainty, and risk analysis; application of basic principles and tools of analysis using case studies
  • \n
  • Test Design and Analysis in Manufacturing Engineering \u2013 sampling and descriptive statistics; central limit theorem; hypothesis testing for means and variances; analysis of variance (ANOVA) and factorial design; applications in engineering design, reliability manufacturing, and inspection; design projects
  • \n
  • Computer-Aided Manufacturing \u2013 use of the computer to communicate design information to manufacturing; computer numerical control (CNC) programming; use of CAD / CAM software; overview of manufacturing systems in an automated environment, including cellular manufacturing and computer-aided process planning
  • \n
  • Manufacturing Systems Integration \u2013 analysis and design tools for production planning and control of manufacturing systems, including mathematical modeling of operations and computer tools for simulation; decision-making models for manufacturing systems; material requirements planning, inventory models, and analysis; facilities design
  • \n
  • Manufacturing Automation \u2013 computers in the factory automation environment; basic control theory including feedback; programming and use of programmable logic controllers (PLC), human-machine interface (HMI), and industrial control systems; interfacing of electro-mechanical systems; analog and digital inputs, output; programmable controllers; computer process control
  • \n
  • Supply Chain and Logistics Management \u2013 overview of logistics and supply chain management concepts; models and solution methods for the design, control, operation, and management of supply chains; techniques used to analyze supply chains
  • \n
  • Product-Process Design \u2013 new product design and creative development process; design for manufacturability; study of constraints for prototyping, designing, testing, processing, quality, and customer satisfaction; life-cycle analysis; examination of relevant environmental and ethical issues; design projects using real world problems
  • \n
  • Quality Engineering \u2013 history and philosophies of quality engineering; cost of quality; quality control charts for variables and attributes; process capability; measurement system analysis; acceptance sampling; reliability and life testing methods; quality improvement tools; quality function deployment; failure modes and effects analysis; the Six Sigma set of techniques and tools for process improvement; quality standards and systems
  • \n
  • Manufacturing Process and Tool Engineering \u2013 engineering design of fixtures and tools for manufacturing processes; interpretation of engineering design specifications; analysis of cost, quality, productivity, and safety in tool design; mechanical analysis of tool design; detailed process design for net shape production and component design for manufacture
  • \n
  • Senior Design Projects \u2013 individual or group projects involving system design, modeling, analysis, and testing; problem definition, planning, scheduling, literature review, conceptual and alternative designs; developing a business case for communication and formal reports documenting project methodology; professional ethics
  • \n\n

    Master\u2019s Degree in Manufacturing Engineering \u2013 Two Year Duration
    \nMany holders of a Master\u2019s Degree in Manufacturing Engineering go on to work in production systems design. The focus of this program is research for a master\u2019s thesis. Core classes at this level may include:

    \n\n

    Doctoral Degree in Manufacturing Engineering \u2013 Four to Six Year Duration
    \nDoctoral programs in manufacturing engineering prepare students for work as engineering professors, researchers, senior industry consultants, and policy advisors. Candidates must take a qualifying examination and conduct original research in preparation of their doctoral dissertation.

    \n

    Among the advanced topics addressed at the doctoral level are:

    \n", "display_order": 2, "created_at": "2019-08-29T17:56:34.915961-07:00", "updated_at": "2021-12-14T10:55:33.447128-08:00"}, {"degree_id": 383, "page": 1, "title": "Degrees Similar to Manufacturing Engineering", "summary_markdown": "**[Industrial Engineering](/degrees/industrial-engineering-degree/)** \r\nIndustrial engineering majors learn how to improve the way that industries and organizations, such as hospitals and factories, operate. They draw on their knowledge in math, science, business, and psychology to consider factors like materials, equipment, and people. \r\n\r\n**[Mechanical Engineering](/degrees/mechanical-engineering-degree/)** \r\nStudents of mechanical engineering learn how to research, design, develop, and test mechanical and thermal devices, including tools, sensors, engines, and machines. These devices serve many industries, including the aerospace, medical, energy, and manufacturing sectors. In addition to coursework in engineering and design, degree programs in the field include classes in mathematics, life sciences, and physical sciences. \r\n\r\n**[Operations Research](/degrees/operations-research-degree/)** \r\nWhile operations management is concerned with efficiently creating and delivering products and services, operations research is focused on analyzing systems to improve them and solve problems.", "content_markdown": "**[Robotics Engineering](/degrees/robotics-engineering-degree/)** \r\nRobotics engineering is focused on designing robots and robotic systems than can perform duties that humans are either unable or prefer not to perform. \r\n\r\n**[Supply Chain Management](/degrees/supply-chain-management-degree/)** \r\nSupply chain management (SCM) is the management of the lifecycle of materials and products through a business, from manufacturing to distribution and returns. It is a balancing act. It is about balancing inventory, service delivery, profit margins, and customer loyalty. It is about both operational and financial efficiency. What this means is that the supply chain manager is a multitasker and degree programs in the field teach students how to perform every task that the job entails. \r\n\r\n**[Systems Engineering](/degrees/systems-engineering-degree/)** \r\nThis degree program is concerned with how to use math and science to develop innovative technologies that help run businesses. Students of systems engineering take courses in operations management, computer-based simulation systems, and statistical applications in business.", "content_html": "

    Robotics Engineering
    \nRobotics engineering is focused on designing robots and robotic systems than can perform duties that humans are either unable or prefer not to perform.

    \n

    Supply Chain Management
    \nSupply chain management (SCM) is the management of the lifecycle of materials and products through a business, from manufacturing to distribution and returns. It is a balancing act. It is about balancing inventory, service delivery, profit margins, and customer loyalty. It is about both operational and financial efficiency. What this means is that the supply chain manager is a multitasker and degree programs in the field teach students how to perform every task that the job entails.

    \n

    Systems Engineering
    \nThis degree program is concerned with how to use math and science to develop innovative technologies that help run businesses. Students of systems engineering take courses in operations management, computer-based simulation systems, and statistical applications in business.

    ", "display_order": 3, "created_at": "2019-08-29T17:56:34.918277-07:00", "updated_at": "2021-12-14T10:57:11.365595-08:00"}, {"degree_id": 383, "page": 1, "title": "Skills You’ll Learn", "summary_markdown": "Graduates of a manufacturing engineering program come away from their studies with several transferable skills: \r\n\r\n- Analysis, critical thinking, and problem-solving \r\n- Attention to detail \r\n- Capacity to work to deadlines \r\n- Computer-aided design (CAD) \r\n- Creativity \r\n- Health and safety awareness \r\n- Interpersonal and communication skills \r\n- Math and science skills \r\n- Organization and project planning, implementation, and management \r\n- Stress management \r\n- Teamwork \r\n- Understanding of risk and reward \r\n- Understanding of sourcing, manufacturing, transportation, warehousing, and inventory logistics", "content_markdown": "", "content_html": "", "display_order": 4, "created_at": "2019-08-29T17:56:34.920627-07:00", "updated_at": "2021-12-14T10:50:56.694961-08:00"}, {"degree_id": 383, "page": 1, "title": "What Can You Do with a Manufacturing Engineering Degree?", "summary_markdown": "Because manufacturing processes and systems are part of multiple industries that produce a product, employment opportunities for manufacturing engineers exist in several fields: \r\n\r\n- Automotive \r\n- Aerospace \r\n- Chemical \r\n- Cosmetics and toiletries \r\n- Electronics \r\n- Fashion \r\n- Food and beverages \r\n- Furniture and fixtures \r\n- Industrial equipment \r\n- Paper \r\n- Pharmaceutical \r\n- Sporting goods \r\n- Toys \r\n- Transportation \r\n- Household goods", "content_markdown": "In each of the above sectors, the work of manufacturing engineers includes factory design and management and production improvement. Their specific roles / titles for may include: \r\n\r\n- Manufacturing Engineer \r\n- Design Engineer \r\n- Engineering Manager \r\n- Engineering Technician \r\n- [Industrial Engineer](//www.chevelle-parts.com/careers/industrial-engineer/) \r\n- Logistics Engineer \r\n- Occupational Safety Officer \r\n- Operations Analyst \r\n- Process Engineer \r\n- Production Engineer \r\n- Quality Control Manager \r\n\r\nColleges and universities and research and development firms also hire manufacturing engineers.", "content_html": "

    In each of the above sectors, the work of manufacturing engineers includes factory design and management and production improvement. Their specific roles / titles for may include:

    \n\n

    Colleges and universities and research and development firms also hire manufacturing engineers.

    ", "display_order": 5, "created_at": "2019-08-29T17:56:34.922798-07:00", "updated_at": "2021-12-14T10:59:20.412002-08:00"}], "degree_specializations": []}">

    什么是制造工程学位?

    制造工程师设计、实施、监控和改进制造过程,以提高生产率。

    制造工程专业的学生学习如何:

    • 设计制造设备和系统
    • 购买设备
    • 管理设备/系统维护计划
    • 诊断设备/系统故障
    • 管理故障和生产问题
    • 优化运营效率
    • 监督员工
    • 与其他工程师合作
    • 管理预算
    • 与供应商和客户保持联系
    • 记录

    程序选项

    制造工程学士学位-四年
    在本科阶段,制造工程专业的学生在材料、机械和工业工程以及设计方面获得了坚实的基础,以支持他们对过程力学的理解。课程将课堂和实验室学习与到制造中心的实地考察结合起来。课程中的辅助课程包括物理、化学和微积分。拥有制造工程学士学位的毕业生通常会找到工程技术人员或工艺工程师的工作。

    以下是该计划的核心课程概述:

    • 工业和制造工程概论-介绍工业和制造工程的主要课题,包括数据分析、流程改进、运筹学、产品设计和供应链管理
    • 制造工艺:净形——金属铸造作为制造中的净形工艺(产品的最终或尽可能接近最终形状的是净形);铸造材料的性能及铸造方法;快速原型的介绍;图案和铸件设计原则
    • 制造工艺:材料连接-金属切割和焊接工艺的理论和应用;包括屏蔽金属电弧、药芯电弧、埋弧、气体金属电弧、气体钨弧、钎焊、电阻、氧乙炔工艺;连接理论,接头设计,规范和测试;粘合剂粘接简介
    • 设计与制造概论-回顾可视化、素描和制图基础;零部件的计算机辅助实体建模;介绍车床和铣床上的常规加工工艺,计算机数控(CNC),质量控制,生产方法和制造设计
    • 基础电子制造-通过计算机辅助设计(CAD)和计算机辅助制造(CAM)、制造设计(DFM)、文档要求、原型设计和生产计划等概念扩展的实用电子制造知识;项目计划,焊接,自动化,手工工具使用和生产的技术
    • 过程改进基础——工作简化和动态分析的原则;工作流程和方法的记录;通过工作测量和标准、时间研究、合成数据(将抽样技术应用于真实数据或通过创建模拟/模型产生的数据)、预定时间系统和工作抽样来改进过程;津贴及工作表现评等、生产力措施;精益生产原理介绍
    • 中级设计和制造-先进的计算机辅助零件设计,具有几何尺寸和公差,装配,以及金属,聚合物和复合材料组件的原型技术;向制造部门传达设计信息;非传统制造工艺的实践经验
    • 工程经济学——工程决策的经济分析;确定投资回报率;通货膨胀、折旧和所得税的影响;敏感性、不确定性和风险分析;运用案例分析的基本原理和分析工具
    • 制造工程测试设计与分析-抽样与描述性统计中心极限定理;均值和方差的假设检验;方差分析和因子设计;应用于工程设计、可靠性制造和检验;设计项目
    • 计算机辅助制造-使用计算机将设计信息传递给制造业;计算机数控编程;CAD / CAM软件的使用;自动化环境中的制造系统概述,包括单元制造和计算机辅助工艺规划
    • 制造系统集成-用于生产计划和制造系统控制的分析和设计工具,包括操作的数学建模和用于仿真的计算机工具;制造系统的决策模型物料需求计划,库存模型,分析;设施设计
    • 制造自动化-工厂自动化环境中的计算机;基本控制理论,包括反馈;可编程逻辑控制器(PLC)、人机界面(HMI)和工业控制系统的编程和使用;机电系统接口;模拟和数字输入、输出;可编程控制器;计算机过程控制
    • 供应链和物流管理-物流和供应链管理概念的概述;供应链设计、控制、运行和管理的模型和解决方法;用于分析供应链的技术
    • 产品-流程设计-新产品设计和创意开发流程;可制造性设计;研究原型、设计、测试、加工、质量和客户满意度的约束条件;生命周期分析;审查有关的环境和道德问题;使用现实世界的问题设计项目
    • 质量工程-质量工程的历史和哲学;质量成本;变量和属性的质量控制图;过程能力;测量系统分析;验收抽样;可靠性和寿命试验方法;质量改进工具;质量职能部署;失效模式及影响分析; the Six Sigma set of techniques and tools for process improvement; quality standards and systems
    • 制造工艺和工具工程-夹具和制造工艺工具的工程设计;工程设计规范讲解;分析工具设计中的成本、质量、生产率和安全性;刀具设计的力学分析;净形生产的详细工艺设计和制造的零件设计
    • 高级设计项目——涉及系统设计、建模、分析和测试的个人或小组项目;问题定义,计划,进度安排,文献回顾,概念和备选设计;开发用于沟通的业务案例和记录项目方法的正式报告;职业道德

    制造工程硕士学位-两年制
    许多持有制造工程硕士学位的人继续从事生产系统设计工作。这个项目的重点是硕士论文的研究。这个级别的核心类可能包括:

    • 决策分析
    • 供应链管理
    • 产品和工艺开发
    • 制造通信网络
    • 生产中的自适应控制——用于调节生产过程的自动控制

    制造工程博士学位,4 - 6年
    制造工程博士课程为学生将来成为工程教授、研究人员、高级行业顾问和政策顾问做准备。候选人必须参加资格考试,并在准备博士论文时进行原创性研究。

    在博士水平的高级主题中有:

    • 人类行为与制造业
    • 质量控制
    • 国际制造业
    • 计量学-测量在制造和质量控制中的应用
    • 风险分析

    与制造工程类似的学位

    工业工程
    工业工程专业学习如何改善医院和工厂等行业和组织的运作方式。他们利用自己在数学、科学、商业和心理学方面的知识来考虑材料、设备和人等因素。

    机械工程
    机械工程专业的学生学习如何研究、设计、开发和测试机械和热设备,包括工具、传感器、发动机和机器。这些设备服务于许多行业,包括航空航天、医疗、能源和制造部门。除了工程和设计课程外,该领域的学位课程还包括数学、生命科学和物理科学。

    运筹学
    运营管理关注的是有效地创建和交付产品和服务,而运筹学则专注于分析系统以改进它们并解决问题。

    机器人技术工程学
    机器人工程专注于设计能够执行人类不能或不愿执行的任务的机器人和机器人系统。

    供应链管理
    供应链管理(SCM)是通过企业对材料和产品的生命周期进行管理,从制造到分销和退货。这是一种平衡。这是关于平衡库存、服务交付、利润率和客户忠诚度。这既关乎运营效率,也关乎财务效率。这意味着供应链经理是一个多任务者,该领域的学位课程教学生如何完成工作所需的每一项任务。

    系统工程
    该学位课程涉及如何使用数学和科学来开发有助于经营企业的创新技术。系统工程专业的学生学习运营管理、基于计算机的模拟系统和统计在商业中的应用等课程。

    你将学会的技能

    制造工程专业的毕业生从他们的学习中获得了一些可转移的技能:

    • 分析,批判性思维和解决问题的能力
    • 注重细节
    • 能够按时完成工作
    • 计算机辅助设计
    • 创造力
    • 健康和安全意识
    • 人际关系和沟通技巧
    • 数学和科学技能
    • 组织和项目的策划、实施和管理
    • 压力管理
    • 团队合作
    • 理解风险和回报
    • 了解采购、制造、运输、仓储和库存物流

    拥有制造工程学位你能做什么?

    由于制造过程和系统是生产产品的多个行业的一部分,制造工程师的就业机会存在于以下几个领域:

    • 汽车
    • 航空航天
    • 化学
    • 化妆品和洗漱用品
    • 电子产品
    • 时尚
    • 食物和饮料
    • 家具及固定装置
    • 工业设备
    • 制药
    • 体育用品
    • 玩具
    • 运输
    • 家庭用品

    在上述每个部门中,制造工程师的工作包括工厂设计和管理以及生产改进。他们的具体角色/头衔可能包括:

    • 制造工程师
    • 设计工程师
    • 工程经理
    • 工程技术员
    • 工业工程师
    • 物流工程师
    • 职业安全主任
    • 业务分析师
    • 工艺工程师
    • 生产工程师
    • 质量控制经理

    学院、大学和研发公司也会雇佣制造工程师。

    学费

    看看哪些学校学费最贵,哪些学校学费最便宜。

    了解学费